3-ACETOXY-2-CYCLOALKEN-1-ONES BY ACETYLATION OF CYCLIC 1,3-DIKETONES WITH KETENE

Andrej BOHÁČ and Pavel HRNČIAR

Department of Organic Chemistry, Comenius University, 842 15 Bratislava

Received November 22, 1990 Accepted February 8, 1991

Acetylation of lower 1,3-cycloalkanediones with ketene takes place exclusively at oxygen in contrast to acyclic β -diketones. Thus, 1,3-cyclopentanedione (I), 1,3-cyclohexanedione (II) and 5,5-dimethyl-1,3-cyclohexanedione (III) afforded the corresponding 3-acetoxy-2-cycloalken-1-ones VI - VIII in quantitative yields. 1,3-Cycloheptanedione (IV) and 1,3-cyclooctanedione (V) differed considerably from the preceding diketones by low reactivities.

The already known reaction of acyclic β -dicarbonyl compounds with ketene¹ yielded products of C-acetylation. Recently, acetylation of cyclic β -diketones with isopropenyl acetate was described² to furnish products of O-acetylation of the starting 1,3-cycloalkanediones. The different way of acetylation of the acyclic and cyclic β -dicarbonyl compounds could be rationalized by diversities in their structures: acyclic β -dicarbonyl compounds can exist in an energetically more favourable intramolecularly stabilized U-form, whilst cyclic β -diketones with less than ten-membered rings have rigid W-shaped structures. Ten- and more-membered rings tend to having a U*-shaped arrangement similar to that of β -dicarbonyl acyclic compounds³ (Scheme 1).

SCHEME 1

Barrier to the O-acetylation of acyclic β -diketones (structure U) with ketene is likely a strong intramolecular hydrogen bonding and the delocalization energy of this system resulting in a partially aromatic character.

This paper investigates the reactivity and direction of acetylation of cyclic five- to eight-membered 1,3-diketones with ketene. Our experiments showed that treatment of 1,3-cycloalkanediones I-V with ketene also afforded O-acetylated products similarly as with isopropenyl acetate²; products of C-acetylation were not observed. Reactivity of the afore-mentioned 1,3-cycloalkanediones with ketene was strongly dependent on the readiness to passing into the enol form (cf. structure *W*, Scheme 1). Cyclic 1,3-diketones with five- and six-membered rings, i.e. 1,3-cyclopentanedione (*II*) and 5,5-dimethyl-1,3-cyclohexanedione (*III*) – all almost fully enolized as evidenced by their ¹H NMR spectra in hexadeuterodimethyl sulfoxide and by ref.³ – reacted with ketene quite readily, even at room temperature and without a catalyst to produce 3-acetoxy-2-cycloalken-1-ones VI - VIII. The reaction rate is almost proportional to that of ketene introduced into the mixture (checked by thin-layer chromatography). Yields of these reactions are quantitative (Scheme 2).

SCHEME 2

The situation, however, markedly changed when trying to prepare mono-O--acetylated products from the non-enolized 1,3-cycloalkanediones having sevenor eight-membered rings (evidenced by ¹H NMR spectral data and ref.³). As found, 1,3-cycloheptanedione (IV) and 1,3-cyclooctanedione (V) react with ketene in the absence of a catalyst very slowly and consequently, a long-term introduction of ketene into the mixture at elevated temperature (125°C) was needed. Compound IVafforded 3-acetoxy-2-cyclohepten-1-one (IX) in 64% yield. It is noteworthy that the di-O-acetylated product could not be detected. An addition of 4-toluenesulfonic acid as catalyst did not rise the yields of mono-O-acetyl derivatives IX and X; instead, di--O-acetyl derivatives XI and XII were the main products in the equilibrium mixture together with monoacetyl derivatives IX, X and the starting 1,3-cycloalkanedione (Scheme 3).

Significant differences in the reactivity between the five- and six-membered and the seven- and eight-membered 1,3-cycloalkanediones can be rationalized by the

Acetylation of Cyclic 1,3-Diketones

readiness of the first two to forms enol form under the given reaction conditions; enol is an intermediate in O-acetylation and its formation is likely the rate-determining crucial reaction step. Seven- and eight-membered cyclic β -diketones could be O-acetylated only at elevated temperatures; the seven-membered diketone reacted selectively without a catalyst to afford 3-acetoxy-2-cyclohepten-1-one (IX), i.e. only mono acetylation took place. This was, however, not the case with the eight-membered homologue X.

SCHEME 3

The presented reactions constitute a suitable method for preparing 3-acetoxy-2--cycloalken-1-ones by reaction of ketene with 1,3-cycloalkanediones as far as they undergo enolization. This method makes it possible to obtain the required products in quantitative yields in a quite short time at room temperature without catalyst, absolutization of solvents and without an inert atmosphere.

The structure of all the synthesized compounds was corroborated by spectral (IR and ¹H NMR) methods (see Table I).

EXPERIMENTAL

Diketones I and II were obtained by hydrogenation of the corresponding unsaturated diones^{4,5} and diketones IV and V by a three-step synthesis starting from diethyl adipate and diethyl pimelate⁶, respectively. The commercially available dimedone (III) was purified by crystallization from acetone.

The ¹H NMR spectra were measured with a Tesla BS 487 apparatus operating at 80 MHz and the IR spectra with a Perkin-Elmer, model 567 spectrophotometer (range 400-4 000 cm⁻¹). Ketene was produced by pyrolysis of acetone vapors over the red-hot resistance wire in the ketene lamp⁷ (rate 0.45 mol ketene per hour, determined by the reaction of ketene with aniline⁸). Impurities accompanying ketene were freezed out at -40° C prior to the reaction. The products and the time course of reactions were monitored both by capillary gas chromatography (phase OV-1) and thin-layer chromatography (on Silufol UV-254 sheets, Kavalier, Czechoslovakia, detection by UV₂₅₄ light). Characteristic data for products prepared are presented in Table I.

Acetylation of 1,3-Cycloalkanediones with Ketene

Method A: Ketene was introduced into a suspension of the respective 1,3-cycloalkanedione (50 mmol) in acetic anhydride (50 ml) at room temperature. The solid phase disappeared during the reaction; the solvent was then distilled off at $60^{\circ}C/2$ kPa and the crude product was purified by vacuum distillation at 13 Pa.

Method B: Ketene was introduced into a solution of 1,3-cycloalkanedione (8 mmol) in dibutyl ether (50 ml) in a vessel equipped with a reflux condenser at 125° C for 5 h. The solvent was distilled off at 30° C/13 Pa and the crude product was chromatographed on silica gel (40 to 100 mesh, ref.⁹) ethyl acetate-petroleum ether (1 : 2) being the elution solvent.

TABLE I

Synthesis and properties of 3-acetoxy-2-cycloalken-1-ones and 1,3-diacetoxy-1,3-cycloalkadienes

Com- pound	Method (Time ^a min)		B.p. °C/13 Pa	$R_F^{\ b}$ n_D^{20}	IR ^c cm ⁻¹	¹ H NMR ^{<i>d</i>} (δ , ppm)		
						СН ₃ —	CH ₂	CH=
			3-Ac	etoxy-2-c	ycloalke	n-1-ones		,
VI	A (7)	100	93-95	0.40	1 790, 1 710,	2∙27 s	$2 \cdot 10 - 2 \cdot 52 \text{ m},$	6·16 t ^e
VII	A (8)	100	93—96	1·4950 0·52 1·4928	1 600 1 768, 1 668	2·21 s	2.52 - 2.86 m $1.80 - 2.65 \text{ m}^{f}$	5∙87 t ^e
VIII	A (15)	100	99-102	0∙65 1∙4805	1 764, 1 667	2·23 s, 1·13 s [∫]	2·29 s ^g , 2·45 d ^{e.h}	5·92 t ^e
IX	B (300) C (600)	64 18	110-113	0∙70 1∙4921		2·18 s	$1.47 - 2.40 \text{ m}^{f}$, 2.40 - 2.82 m	5·84 s
X	C (600)	8		0·65 ^j 1·4922	_	2·14 s	1·37—2·55 m ⁱ	5∙28 s
			1,3-Dia	acetoxy-1	,3-cycloa	lkadienes		
XI	C (600)	50	_	0·85 1·4899	1 750, 1 672	2·11 s ^f	$1.67 - 2.80 \text{ m}^f$	5·41 s, 5·56 t ^k
XII	C (600)	57	_	0·70 ^j 1·4880	1 756, 1 666	2·10 s, 2·13 s	$1.35 - 1.90 \text{ m}^{l}$, $1.90 - 2.55 \text{ m}^{l.h}$	5·38 t ^m 5·45 s

^{*a*} Time during which ketene was introduced; ^{*b*} TLC on SiO₂ (petroleum ether-ethyl acetate 1 : 1); ^{*c*} in CHCl₃; ^{*d*} in CDCl₃; ^{*e*} J = 1.5 Hz; ^{*f*} 6 H; ^{*g*} CH₂CO; ^{*h*} CH₂C=; ^{*i*} 10 H; ^{*j*} petroleum etherethyl acetate 2 : 1; ^{*k*} J = 6 Hz; ^{*l*} 4 H; ^{*m*} J = 8 Hz.

Method C: Ketene was introduced into a solution of 1,3-cycloalkanedione (7 mmol) and 4-toluenesulfonic acid (0·1 g) for 10 h, under the same conditions and work-out as specified with method B.

REFERENCES

- 1. Eck H., Prigge H.: Justus Liebigs Ann. Chem. 731, 12 (1970).
- 2. Šraga J., Hrnčiar P.: Chem. Papers 40, 807 (1986).
- 3. Neilands O., Strandinsh J.: Stroenie i tautomernye prerrashcheniya β-dikarbonilnykh soedinenii, pp. 51–67. Zinatne, Riga 1977.
- 4. Šraga J., Hrnčiar P.: Synthesis 1977, 282.
- 5. Thompson R. B.: Org. Synth., Coll. Vol. 3, 278 (1955).
- 6. Šraga J., Hrnčiar P.: Acta Fac. Rerum Nat. Univ. Comenianae, Chimia 29, 105 (1981).
- 7. Handford W. E., Sauer J. C.: Org. React. 3, 108 (1946).
- 8. Marko M., Krasnec L.: Základy preparativnej organickej chémie I, p. 495. SVTL, Bratislava 1962.
- 9. Still C. W., Kahn M., Mitra A.: J. Org. Chem. 43, 2923 (1978).

Translated by Z. Votický.